Title Toward a complete e-learning system framework for semantic analysis, concept clustering and learning path optimization
نویسنده
چکیده
Most online e-learning systems often demand the pre-requisite requirements between course modules and/or some relationship measures between involved concepts to be explicitly inputed by the course instructors so that an optimizer can be ultimately used to find an optimal learning sequence of involved concepts or modules for each individual learner after considering his/her past performance, learner’s profile, learning style, etc. However, relying solely on the course instructor’s input on the relationship among the involved concepts can be imprecise possibly due to the individual biases by human experts. Furthermore, the decision will become more complicated when various instructors hold conflicting views on the relationship among the involved concepts that may hinder any reasonable deduction. Therefore, we propose in this paper a complete system framework that can perform an explicit semantic analysis on the course materials, possibly aided by the relevant Wiki articles for any missing information about the involved concepts, to formulate the individual concepts, and followed by a heuristic-based concept clustering algorithm to group relevant concepts before finding their relationship measures. Lastly, an evolutionary optimizer will be used to return the optimal learning sequence after considering multiple experts’ recommended learning sequences possibly containing conflicting views. To demonstrate the feasibility of our prototype, we implemented a prototype of the proposed e-learning system framework. Our empirical evaluation clearly revealed the possible advantages of our proposal with many possible directions for future investigation. Keywords-concept clustering; learning objects; learning styles; learning path optimization.
منابع مشابه
Semantic Preserving Data Reduction using Artificial Immune Systems
Artificial Immune Systems (AIS) can be defined as soft computing systems inspired by immune system of vertebrates. Immune system is an adaptive pattern recognition system. AIS have been used in pattern recognition, machine learning, optimization and clustering. Feature reduction refers to the problem of selecting those input features that are most predictive of a given outcome; a problem encoun...
متن کاملWord clustering effect on vocabulary learning of EFL learners: A case of semantic versus phonological clustering
The aim of this study is to determine the effect of word clustering method on vocabulary learning of Iranian EFL learners through a case of semantic versus phonological clustering. To this effect, 80 homogeneous students from four intermediate classes at an English institute in Torbat e Heydariyeh participated in this research. They were assigned to four groups according to semantic versus phon...
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملSemi-supervised Clustering on Heterogeneous Information Networks
Semi-supervised clustering on information networks combines both the labeled and unlabeled data sets with an aim to improve the clustering performance. However, the existing semi-supervised clustering methods are all designed for homogeneous networks and do not deal with heterogeneous ones. In this work, we propose a semi-supervised clustering approach to analyze heterogeneous information netwo...
متن کاملKey Factors for Defining the Conceptual Framework for Quality Assurance in E-Learning
E-learning has evolved for more than a decade, and universities are gradually embracing e-learning to provide more learning experience for their learners. E-learning is the use of electronic means through which training is received and obtained. E-learning offers a wide range of advantages (time and room mobility, cost-effectiveness, etc.) and also overcomes the limitations of digital learning ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012